

SPT IGBT Module

SKM 300GB128D SKM 300GAL128D

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT				•	
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 150 ^{\circ}\text{C}$		1200	V	
I _C	T _j = 150 °C	T _c = 25 °C	370	Α	
		T _c = 80 °C	265	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs	
Inverse D	iode				
I _F	T _j = 150 °C	T_{case} = 25 °C	260	Α	
		T _{case} = 80 °C	180	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	Α	
Freewhee	ling Diode			•	
I _F	T _j = 150 °C	T_{case} = 25 °C	260	Α	
		T _{case} = 80 °C	180	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	Α	
Module					
$I_{t(RMS)}$			500	Α	
T _{vj}			- 40+ 150	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	$T_j = 25 ^{\circ}\text{C}$ $T_i = 25 ^{\circ}\text{C}$		0,2	0,6	mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4,5	6	mΩ
		T _j = 125°C		6	7,5	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,35	V
		$T_j = 125^{\circ}C_{chiplev}$		2,1	2,55	V
C _{ies}				17		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2		nF
C _{res}				1,9		nF
Q_G	V _{GE} = -8V - +20V			2400		nC
R _{Gint}	T _j = 25 °C			2		Ω
t _{d(on)}				170		ns
t _r E _{on}	$R_{Gon} = 5 \Omega$	V _{CC} = 600V		55		ns
E _{on}		I _{Cnom} = 200A		22		mJ
^L d(off)	$R_{Goff} = 5 \Omega$	T _j = 125 °C		660		ns
t _f		$V_{GE} = \pm 15V$		60		ns
E _{ff}		L _s = 20 nH		22		mJ
R _{th(j-c)}	per IGBT				0,085	K/W

SEMITRANS[®] 3

SPT IGBT Module

SKM 300GB128D SKM 300GAL128D

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Character	ristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V	
V_{F0}		T _j = 25 °C		1,1	1,2	V	
r _F		T _j = 25 °C		4,5	6,5	mΩ	
I _{RRM}	I _{Fnom} = 200 A	T _j = 125 °C		280		Α	
Q_{rr}	di/dt = 6300 A/μs	$L_S = 20 \text{ nH}$		33		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			11		mJ	
$R_{th(j-c)D}$	per diode				0,18	K/W	
FWD							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V	
V_{F0}		$T_j = 25 \degree C$ $T_j = 25 \degree C$		1,1	1,2	V	
r _F		T _j = 25 °C		4,5	6,5	V	
I _{RRM}	I _{Fnom} = 200 A	T _j = 25 °C		280		Α	
Q _{rr}	di/dt = 6300 A/μs	L _S = 20 nH		33		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			11		mJ	
$R_{th(j-c)FD}$	per diode				0,18	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SPT IGBT Module

SKM 300GB128D SKM 300GAL128D

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Z _{th}			
Symbol	Conditions	Values	Units
Z _{th(i,o)}			•
Z R _i	i = 1	55	mk/W
R_i	i = 2	26	mk/W
R _i	i = 3	3,5	mk/W
R_{i}	i = 4	0,5	mk/W
tau _i	i = 1	0,04	s
tau _i	i = 2	0,189	s
tau _i	i = 3	0,0017	s
tau _i	i = 4	0,003	s
Z _{th(j-c)D}			_
R _i	i = 1	120	mk/W
R_i	i = 2	48	mk/W
R_{i}	i = 3	10	mk/W
R_{i}	i = 4	2	mk/W
tau _i	i = 1	0,0727	s
tau _i	i = 2	0,006	s
tau _i	i = 3	0,0078	s
tau _i	i = 4	0,0002	s

6 13-10-2006 RAA © by SEMIKRON