SPT IGBT Module ### SKM 300GB128D SKM 300GAL128D #### **Features** - Homogeneous Si - SPT = Soft-Punch-Through technology - V_{CEsat} with positive temperature coefficient - High short circuit capability, self limiting to 6 x I_c ### **Typical Applications** - AC inverter drives - UPS - Electronic welders at f_{sw} up to 20 kHz | Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified | | | | | | |--|---|---------------------------|-----------|-------|--| | Symbol | Conditions | | Values | Units | | | IGBT | | | | • | | | V_{CES} | $T_j = 25 ^{\circ}\text{C}$
$T_i = 150 ^{\circ}\text{C}$ | | 1200 | V | | | I _C | T _j = 150 °C | T _c = 25 °C | 370 | Α | | | | | T _c = 80 °C | 265 | Α | | | I _{CRM} | I _{CRM} =2xI _{Cnom} | | 400 | Α | | | V_{GES} | | | ± 20 | V | | | t _{psc} | V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T _j = 125 °C | 10 | μs | | | Inverse D | iode | | | | | | I _F | T _j = 150 °C | T_{case} = 25 °C | 260 | Α | | | | | T _{case} = 80 °C | 180 | Α | | | I _{FRM} | I _{FRM} =2xI _{Fnom} | | 400 | Α | | | I _{FSM} | t _p = 10 ms; sin. | T _j = 150 °C | 1800 | Α | | | Freewhee | ling Diode | | | • | | | I _F | T _j = 150 °C | T_{case} = 25 °C | 260 | Α | | | | | T _{case} = 80 °C | 180 | Α | | | I _{FRM} | I _{FRM} =2xI _{Fnom} | | 400 | Α | | | I _{FSM} | t _p = 10 ms; sin. | T _j = 150 °C | 1800 | Α | | | Module | | | | | | | $I_{t(RMS)}$ | | | 500 | Α | | | T _{vj} | | | - 40+ 150 | °C | | | T _{stg} | | | - 40+ 125 | °C | | | V _{isol} | AC, 1 min. | | 4000 | V | | | Characteristics $T_c =$ | | | 25 °C, unless otherwise specified | | | | |-----------------------------------|---|--|-----------------------------------|------|-------|-------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$ | | 4,5 | 5,5 | 6,5 | V | | I _{CES} | $V_{GE} = 0 V, V_{CE} = V_{CES}$ | $T_j = 25 ^{\circ}\text{C}$
$T_i = 25 ^{\circ}\text{C}$ | | 0,2 | 0,6 | mA | | V _{CE0} | | T _j = 25 °C | | 1 | 1,15 | V | | | | T _j = 125 °C | | 0,9 | 1,05 | V | | r _{CE} | V _{GE} = 15 V | T _j = 25°C | | 4,5 | 6 | mΩ | | | | T _j = 125°C | | 6 | 7,5 | mΩ | | V _{CE(sat)} | I _{Cnom} = 200 A, V _{GE} = 15 V | T _j = 25°C _{chiplev.} | | 1,9 | 2,35 | V | | | | $T_j = 125^{\circ}C_{chiplev}$ | | 2,1 | 2,55 | V | | C _{ies} | | | | 17 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 2 | | nF | | C _{res} | | | | 1,9 | | nF | | Q_G | V _{GE} = -8V - +20V | | | 2400 | | nC | | R _{Gint} | T _j = 25 °C | | | 2 | | Ω | | t _{d(on)} | | | | 170 | | ns | | t _r
E _{on} | $R_{Gon} = 5 \Omega$ | V _{CC} = 600V | | 55 | | ns | | E _{on} | | I _{Cnom} = 200A | | 22 | | mJ | | ^L d(off) | $R_{Goff} = 5 \Omega$ | T _j = 125 °C | | 660 | | ns | | t _f | | $V_{GE} = \pm 15V$ | | 60 | | ns | | E _{ff} | | L _s = 20 nH | | 22 | | mJ | | R _{th(j-c)} | per IGBT | | | | 0,085 | K/W | SEMITRANS[®] 3 ### **SPT IGBT Module** SKM 300GB128D SKM 300GAL128D #### **Features** - Homogeneous Si - SPT = Soft-Punch-Through technology - V_{CEsat} with positive temperature coefficient - High short circuit capability, self limiting to 6 x I_c #### **Typical Applications** - AC inverter drives - UPS - Electronic welders at f_{sw} up to 20 kHz | Character | ristics | | | | | | | |----------------------|--|---|------|------|-------|-------|--| | Symbol | Conditions | | min. | typ. | max. | Units | | | Inverse Diode | | | | | | | | | $V_F = V_{EC}$ | I_{Fnom} = 200 A; V_{GE} = 0 V | $T_j = 25 ^{\circ}C_{\text{chiplev.}}$ | | 2 | 2,5 | V | | | | | $T_j = 125 ^{\circ}C_{chiplev.}$ | | 1,8 | | V | | | V_{F0} | | T _j = 25 °C | | 1,1 | 1,2 | V | | | r _F | | T _j = 25 °C | | 4,5 | 6,5 | mΩ | | | I _{RRM} | I _{Fnom} = 200 A | T _j = 125 °C | | 280 | | Α | | | Q_{rr} | di/dt = 6300 A/μs | $L_S = 20 \text{ nH}$ | | 33 | | μC | | | E _{rr} | $V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$ | | | 11 | | mJ | | | $R_{th(j-c)D}$ | per diode | | | | 0,18 | K/W | | | FWD | | | | | | | | | $V_F = V_{EC}$ | I_{Fnom} = 200 A; V_{GE} = 0 V | $T_j = 25 ^{\circ}C_{\text{chiplev.}}$ | | 2 | 2,5 | V | | | | | $T_j = 125 ^{\circ}C_{\text{chiplev.}}$ | | 1,8 | | V | | | V_{F0} | | $T_j = 25 \degree C$ $T_j = 25 \degree C$ | | 1,1 | 1,2 | V | | | r _F | | T _j = 25 °C | | 4,5 | 6,5 | V | | | I _{RRM} | I _{Fnom} = 200 A | T _j = 25 °C | | 280 | | Α | | | Q _{rr} | di/dt = 6300 A/μs | L _S = 20 nH | | 33 | | μC | | | E _{rr} | $V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$ | | | 11 | | mJ | | | $R_{th(j-c)FD}$ | per diode | | | | 0,18 | K/W | | | Module | | | | | | | | | L _{CE} | | | | 15 | 20 | nH | | | R _{CC'+EE'} | res., terminal-chip | T _{case} = 25 °C | | 0,35 | | mΩ | | | | | T _{case} = 125 °C | | 0,5 | | mΩ | | | R _{th(c-s)} | per module | | | | 0,038 | K/W | | | M _s | to heat sink M6 | | 3 | | 5 | Nm | | | M _t | to terminals M6 | | 2,5 | | 5 | Nm | | | w | | | | | 325 | g | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. ### **SPT IGBT Module** SKM 300GB128D SKM 300GAL128D | Features | |-----------------| |-----------------| - Homogeneous Si - SPT = Soft-Punch-Through technology - V_{CEsat} with positive temperature coefficient - High short circuit capability, self limiting to 6 x I_c ### **Typical Applications** - AC inverter drives - UPS - Electronic welders at f_{sw} up to 20 kHz | Z _{th} | | | | |-----------------------|------------|--------|-------| | Symbol | Conditions | Values | Units | | Z _{th(i,o)} | | | • | | Z
R _i | i = 1 | 55 | mk/W | | R_i | i = 2 | 26 | mk/W | | R _i | i = 3 | 3,5 | mk/W | | R_{i} | i = 4 | 0,5 | mk/W | | tau _i | i = 1 | 0,04 | s | | tau _i | i = 2 | 0,189 | s | | tau _i | i = 3 | 0,0017 | s | | tau _i | i = 4 | 0,003 | s | | Z _{th(j-c)D} | | | _ | | R _i | i = 1 | 120 | mk/W | | R_i | i = 2 | 48 | mk/W | | R_{i} | i = 3 | 10 | mk/W | | R_{i} | i = 4 | 2 | mk/W | | tau _i | i = 1 | 0,0727 | s | | tau _i | i = 2 | 0,006 | s | | tau _i | i = 3 | 0,0078 | s | | tau _i | i = 4 | 0,0002 | s | 6 13-10-2006 RAA © by SEMIKRON