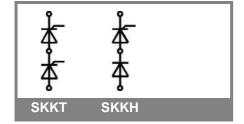
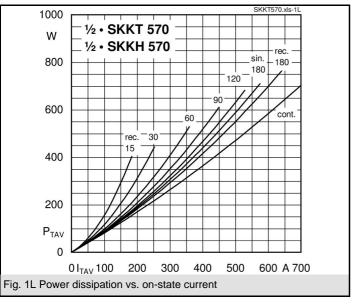
SKKT 570, SKKH 570

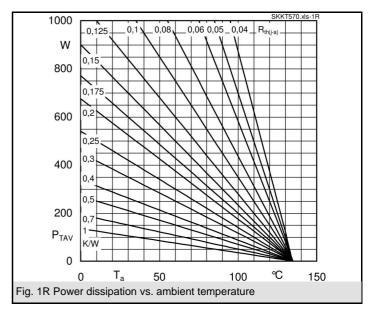
Thyristor / Diode Modules

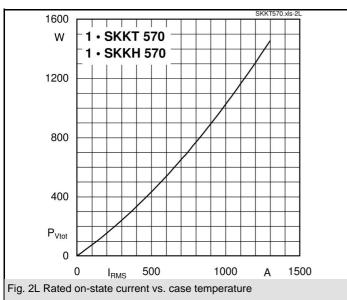
SKKT 570 SKKH 570

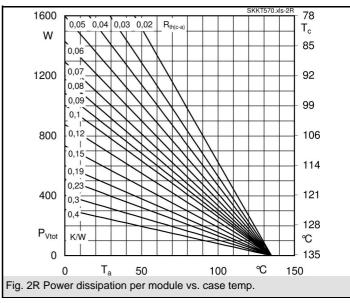
Features

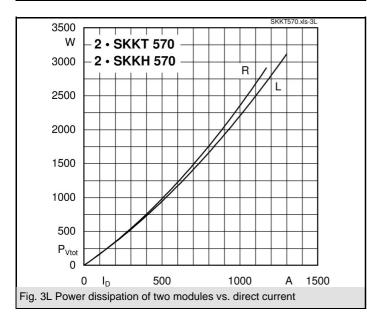

- Heat transfer through aluminium nitride ceramic insulated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E63532

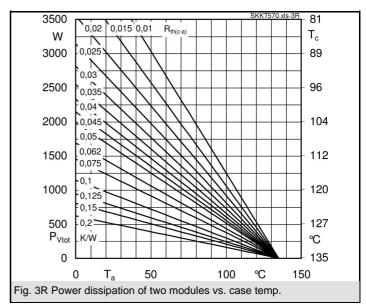

Typical Applications*

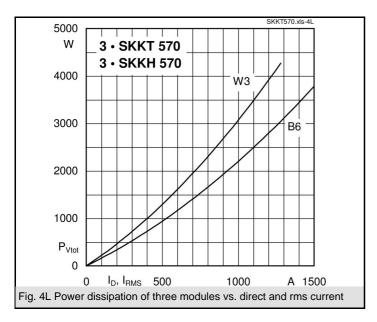

- · AC motor softstarters
- Input converters for AC inverter drives
- DC motor control (e.g. for machine tools)
- Temperature control (e.g. for ovens, chemical, processes)
- Professionals light dimming (studios, theaters)
- 1) see assembly instructions
- 2) screws must be lubricated

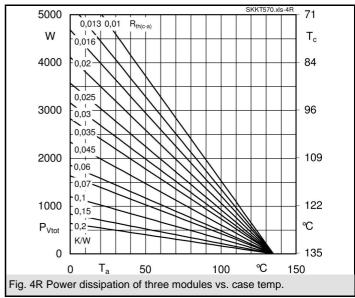

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 1000 A (maximum value for continuous operation)		
V	V	I _{TAV} = 570 A (sin. 180; T _c = 85 °C)		
1300	1200	SKKT 570/12 E	SKKH 570/12 E	
1700	1600	SKKT 570/16 E	SKKH 570/16 E	
1900	1800	SKKT 570/18 E	SKKH 570/18 E	

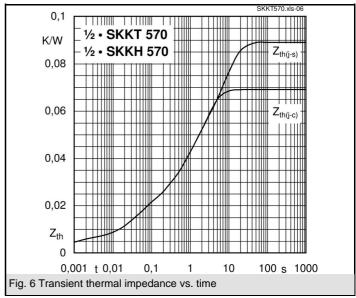

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	570 (435)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	19000	Α
	T _{vj} = 135 °C; 10 ms	15500	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 10 \text{ms}$	1805000	A²s
	T _{vj} = 135 °C; 8,3 10 ms	1201250	A²s
V_{T}	T _{vi} = 25 °C; I _T = 1700 A	max. 1,44	V
$V_{T(TO)}$	T _{vi} = 135 °C	max. 0,78	V
r _T `	T _{vj} = 135 °C	max. 0,32	mΩ
$I_{DD}; I_{RD}$	$T_{vj} = 135 ^{\circ}\text{C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 225	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 135 °C	max. 250	A/µs
(dv/dt) _{cr}	T _{vi} = 135 °C	max. 1000	V/µs
t _q	$T_{vi} = 135 ^{\circ}\text{C}$,	100200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ.} / \text{max}.$	300 / 2000	mA
V_{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	T _{vi} = 25 °C; d.c.	min. 200	mA
V_{GD}	$T_{vj} = 135 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 135 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,069 / 0,034	K/W
R _{th(j-c)}	sin. 180°; per thyristor / per module	0,072 / 0,036	K/W
R _{th(j-c)}	rec. 120°; per thyristor / per module	0,077 / 0,038	K/W
R _{th(c-s)}	per thyristor / per module	0,02 / 0,01	K/W
T_{vj}		- 40 + 135	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a.c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15% ¹⁾	Nm
M_t	to terminals	12 ± 15% ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	1400	g
Case	SKKT	A 60b	
	SKKH	A 66b	

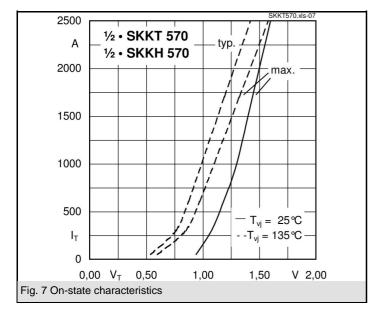


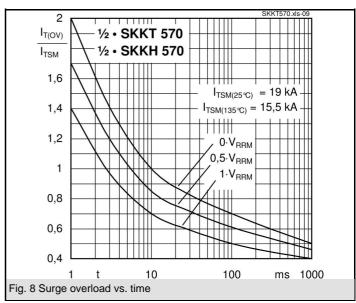


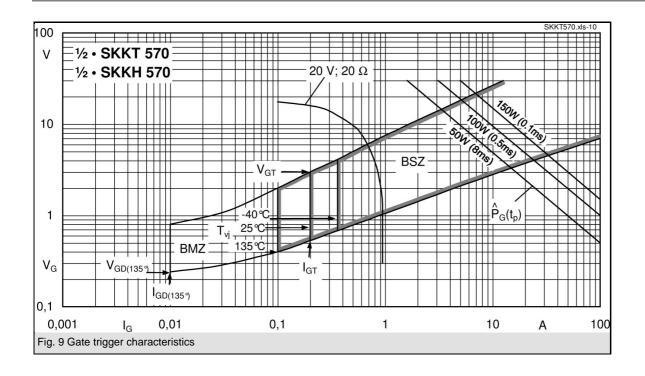


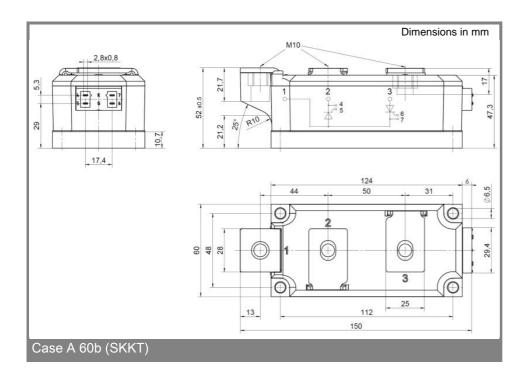


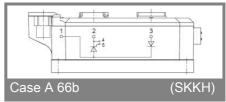





SKKT 570, SKKH 570







* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

4 16-02-2009 MAY © by SEMIKRON