

EiceDRIVER™

High voltage gate driver IC

6ED family - 2nd generation

3 phase 600 V gate drive IC 6ED003L06-F2 6ED003L02-F2

EiceDRIVER™

datasheet

<Revision 2.3>, 21.08.2012

Industrial Power & Control

Edition 21.08.2012 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History							
Page or Item	age or Item Subjects (major changes since previous revision)						
<revision 2.3="">, 21.08.2012</revision>							
p. 16	corrected Enable in table in section 4.4						
all	corrected trademarks						
p. 12	added footnote						

Trademarks of Infineon Technologies AG

AURIX[™], BlueMoon[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], COMNEON[™], EconoPACK[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OmniTune[™], OptiMOS[™], ORIGA[™], PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SMARTi[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™], X-GOLD[™], X-PMU[™], XMM[™], XPOSYS[™].

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-ig™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA[™] of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. Mifare[™] of NXP. MIPI[™] of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX[™] of Tektronix Inc. TOKO[™] of TOKO KABUSHIKI KAISHA TA. UNIX[™] of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2010-10-26

Table of Contents

1	Overview	7
2	Blockdiagram	8
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Pin configuration, description, and functionality Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7) EN (Gate Driver Enable, Pin 10) FAULT (Fault Feedback, Pin 8) ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11) VCC, VSS and COM (Low Side Supply, Pin 1, 12,13) VB1,2,3 and VS1,2,3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28) LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27)	9 .10 .10 .11 .11 .11
4 4.1 4.2 4.3 4.4 4.5 4.6	Electrical Parameters	.12 .13 .13 .14 .14 .14
5	Timing diagrams	.17
6 6.1 6.2	Package PG-DSO-28 PG-TSSOP-28	.19

List of Figures

Figure 1	Typical Application	8
Figure 2	Block diagram for 6ED003L06-F2 / 6ED003L02-F2	
Figure 3	Pin Configuration of 6ED003L06-F2 and 6ED003L02-F2	9
Figure 4	Input pin structure	10
Figure 5	Input filter timing diagram	10
Figure 6	EN pin structures	10
Figure 7	FAULT pin structures	
Figure 8	Timing of short pulse suppression	17
Figure 9	Timing of internal deadtime	17
Figure 10	Enable delay time definition	17
Figure 11	Input to output propagation delay times and switching times definition	18
Figure 12	Operating areas	18
Figure 13	ITRIP-Timing	18
Figure 14	Package drawing	19
Figure 15	PCB reference layout	19
Figure 16	Package drawing	20
Figure 17	PCB reference layout (according to JEDEC 1s0P) left: Reference layout right: detail of footpr	

List of Tables

Table 1	Members of 6ED family – 2 nd generation	
Table 2	Pin Description	9
Table 3	Abs. maximum ratings	
Table 4	Required Operation Conditions	
Table 5	Operating range	
Table 6	Static parameters	
Table 7	Dynamic parameters	
Table 8	Data of reference layout	

EiceDRIVER™ 3 phase 600 V gate drive IC

1 Overview

Main features

- Thin-film-SOI-technology
- Maximum blocking voltage +600V
- Separate control circuits for all six drivers
- CMOS and LSTTL compatible input (negative logic)
- Signal interlocking of every phase to prevent cross-conduction
- Detection of over current and under voltage supply
- externally programmable delay for fault clear after over current detection

Product highlights

- Insensitivity of the bridge output to negative transient voltages up to -50V given by SOI-technology
- · 'shut down' of all switches during error conditions

Typical applications

- Home appliances
- Fans, pumps
- General purpose drives

Product family

Table 1Members of 6ED family – 2nd generation

Sales Name	high side control input HIN1,2,3 and LIN1,2,3	typ. UVLO- Thresholds	Bootstrap diode	Package	
6ED003L06-F2 / 6ED003L02-F2	negative logic	11.7 V / 9.8 V	No	DSO28 / TSSOP28	

Description

The devices are full bridge drivers to control power devices like MOS-transistors or IGBTs in 3-phase systems with a maximum blocking voltage of +600 V. Based on the used SOI-technology there is an excellent ruggedness on transient voltages. No parasitic thyristor structures are present in the device. Hence, no parasitic latch-up may occur at all temperatures and voltage conditions.

The six independent drivers are controlled at the low-side using CMOS resp. LSTTL compatible signals, down to 3.3 V logic. The device includes an under-voltage detection unit with hysteresis characteristic and an overcurrent detection. The over-current level is adjusted by choosing the resistor value and the threshold level at pin ITRIP. Both error conditions (under-voltage and over-current) lead to a definite shut down of all six switches. An error signal is provided at the FAULT open drain output pin. The blocking time after over-current can be adjusted with an RC-network at pin RCIN. The input RCIN owns an internal current source of 2.8 μ A. Therefore, the resistor R_{RCIN} is optional. The typical output current can be given with 165 mA for pull-up and 375 mA for pull down. Because of system safety reasons a 310 ns interlocking time has been realised. The function of input EN can optionally be extended with an over-temperature detection, using an external NTC-resistor (see Fig.1).

2 Blockdiagram

Figure 2 Block diagram for 6ED003L06-F2 / 6ED003L02-F2

3

Pin configuration, description, and functionality

Figure 3 Pin Configuration of 6ED003L06-F2 and 6ED003L02-F2

Table 2Pin Description

Symbol	Description
VCC	Low side power supply
VSS	Logic ground
/HIN1,2,3	High side logic input
/LIN1,2,3	Low side logic input
/FAULT	Indicates over-current and under-voltage (negative logic, open-drain output)
EN	Enable I/O functionality (positive logic)
ITRIP	Analog input for over-current shut down, activates FAULT and RCIN to VSS
RCIN	External RC-network to define FAULT clear delay after FAULT-Signal (T _{FLTCLR})
СОМ	Low side gate driver reference
VB1,2,3	High side positive power supply
HO1,2,3	High side gate driver output
VS1,2,3	High side negative power supply
LO1,2,3	Low side gate driver output
nc	Not connected

3.1 Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7)

The Schmitt trigger input threshold of them are such to guarantee LSTTL and CMOS compatibility down to 3.3 V controller outputs. Input Schmitt trigger and noise filter provide beneficial noise rejection to short input pulses according to Figure 4 and Figure 5.

Figure 4 Input pin structure

An internal pull-up of about 75 k Ω (negative logic) pre-biases the input during supply start-up and a ESD zener clamp is provided for pin protection purposes. The zener diodes are therefore designed for single pulse stress only and not for continuous voltage stress over 10V.

It is anyway recommended for proper work of the driver not to provide input pulse-width lower than 1 µs.

The 6ED-F2 driver IC provide additionally a shoot through prevention capability which avoids the simultaneous on-state of two channels of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). When two inputs of a same leg are activated, only one leg output is activated, so that the leg is kept steadily in a safe state. Please refer to the application note <u>AN-Gatedrive-6ED2-1</u> for a detailed description.

A minimum dead time insertion of typ. 310 ns is also provided, in order to reduce cross-conduction of the external power switches.

3.2 EN (Gate Driver Enable, Pin 10)

The signal applied to pin EN controls directly the output stages. All outputs are set to LOW, if EN is at LOW logic level. The internal structure of the pin is given in Figure 6. The switching levels of the Schmitt-Trigger are here $V_{\text{EN,TH}+} = 2.1$ V and $V_{\text{EN,TH}-} = 1.3$ V. The typical propagation delay time is $t_{\text{EN}} = 780$ ns. There is an internal pull down resistor (75 k Ω), which keeps the gate outputs off in case of broken PCB connection.

3.3 /FAULT (Fault Feedback, Pin 8)

/Fault pin is an active low open-drain output indicating the status of the gate driver (see Figure 7). The pin is active (i.e. forces LOW voltage level) when one of the following conditions occur:

• Under-voltage condition of VCC supply: In this case the fault condition is released as soon as the supply voltage condition returns in the normal operation range (please refer to VCC pin description for more details).

• Over-current detection (ITRIP): The fault condition is latched until current trip condition is finished and RCIN input is released (please refer to ITRIP pin).

Figure 7 /FAULT pin structures

3.4 ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11)

The 6ED family -2^{nd} generation provides an over-current detection function by connecting the ITRIP input with the motor current feedback. The ITRIP comparator threshold (typ 0.44 V) is referenced to VSS ground. A input noise filter (typ. t_{ITRIPMIN} = 230 ns) prevents the driver to detect false over-current events.

Over-current detection generates a hard shut down of all outputs of the gate driver and provides a latched fault feedback at /FAULT pin. RCIN input/output pin is used to determine the reset time of the fault condition. As soon as ITRIP threshold is exceeded the external capacitor connected to RCIN is fully discharged. The capacitor is then recharged by the RCIN current generator when the over-current condition is finished. As soon as RCIN voltage exceeds the rising threshold of typ $V_{\text{RCIN,TH}} = 5.2 \text{ V}$, the fault condition releases and the driver returns operational following the ontrol input pins according to section 3.1. Please refer to <u>AN-Gatedrive-6ED2-1</u> for details on setting RCIN time constant.

3.5 VCC, VSS and COM (Low Side Supply, Pin 1, 12,13)

VCC is the low side supply and it provides power both to input logic and to low side output power stage. Input logic is referenced to VSS ground as well as the under-voltage detection circuit. Output power stage is referenced to COM ground. COM ground is floating respect to VSS ground with a maximum range of operation of +/-5.7 V. A back-to-back zener structure protects grounds from noise spikes.

The under-voltage circuit enables the device to operate at power on when a typical supply voltage higher than V_{CCUV+} is present.

The IC shuts down all the gate drivers power outputs, when the VCC supply voltage is below V_{CCUV} = 9.8 V. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation. Please consult the individual output characteristic of the driven transistor.

3.6 VB1,2,3 and VS1,2,3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28)

VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device emitter/source voltage. Due to the low power consumption, the floating driver stage can be supplied by bootstrap topology connected to VCC.

The device operating area as a function of the supply voltage is given in Figure 12. Details on bootstrap supply section and transient immunity can be found in application note <u>AN-Gatedrive-6ED2-1</u>.

3.7 LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27)

Low side and high side power outputs are specifically designed for pulse operation such as gate drive of IGBT and MOSFET devices. Low side outputs (i.e. LO1,2,3) are state triggered by the respective inputs, while high side outputs (i.e. HO1,2,3) are edge triggered by the respective inputs. In particular, after an under voltage condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side output, while after a under voltage condition of the VCC supply, the low side outputs switch to the state of their respective inputs.

4 Electrical Parameters

4.1 Absolute Maximum Ratings

All voltages are absolute voltages referenced to $V_{\rm SS}$ -potential unless otherwise specified. ($T_{\rm a}$ =25°C)

Table 3Abs. maximum ratings

Parameter	Symbol	Min.	Max.	Unit	
High side offset voltage(Note 1) DSO28 TSSOP28			<i>V</i> _{CC} - <i>V</i> _{BS} -6	600 180	V
High side offset voltage (t_p <500ns, Note 1)			$V_{\rm CC}$ - $V_{\rm BS}$ – 50	_	
High side offset voltage(Note 1)	$V_{\rm B}$	<i>V</i> _{CC} – 6	620 200		
High side offset voltage (t_p <500ns, Note 1)			<i>V</i> _{CC} – 50	_	
High side floating supply voltage ($V_{\rm B}$ vs. $V_{\rm S}$)	(internally clamped)	$V_{\rm BS}$	-1	20	
High side output voltage ($V_{\rm HO}$ vs. $V_{\rm S}$)		$V_{\rm HO}$	-0.5	<i>V</i> _B + 0.5	
Low side supply voltage (internally clamped)	V _{CC}	-1	20	
Low side supply voltage (V_{CC} vs. V_{COM})		V _{CCOM}	-0.5	25	
Gate driver ground		V _{COM}	-5.7	5.7	
Low side output voltage (V_{LO} vs. V_{COM})		V _{LO}	-0.5	<i>V</i> _{CCOM} + 0.5	
Input voltage /LIN, /HIN, EN, ITRIP		$V_{\rm IN}$	-1	10	
FAULT output voltage		$V_{\rm FLT}$	-0.5	<i>V</i> _{CC} + 0.5	
RCIN output voltage		V _{RCIN}	-0.5	<i>V</i> _{CC} + 0.5	
Power dissipation (to package) Note 2	DSO28 TSSOP28	P _D	_	1.3 0.6	W
Thermal resistance	DSO28	$R_{\rm th(j-a)}$	_	75	K/W
(junction to ambient, see section 6)	· · ·	-	165		
Junction temperature	T_{J}	-	125	°C	
Storage temperature	T _S	- 40	150		
offset voltage slew rate (Note 3)		dV _S /dt		50	V/ns

Note :The value for ESD immunity is 1.0kV (Human Body Model). ESD immunity for pins inside the low side (i.e. VCC, /HINx, /LINx, FAULT, EN, RCIN, ITRIP, VSS, COM, LOx) and ESD immunity for pins inside each high side itself (i.e. VBx, HOx, VSx) is guaranteed up to 1.5kV (Human Body Model).

Note 1 : Insensitivity of bridge output to negative transient voltage up to -50V is not subject to production test - verified by design / characterization. External bootstrap diode is mandatory. Refer to application note.

Note 2: Consistent power dissipation of all outputs. All parameters inside operating range.

Note 3: Not subject of production test, verified by characterisation

4.2 Required operation conditions

All voltages are absolute voltages referenced to V_{SS} -potential unless otherwise specified. ($T_a = 25^{\circ}$ C)

Table 4 Required Operation Conditions

Parameter		Symbol	Min.	Max.	Unit
High side offset voltage (Note 1)	DSO28 TSSOP28	V _B	7	620 200	V
Low side supply voltage (V_{CC} vs. V_{COM})	DSO28 TSSOP28	V _{CCOM}	10	25	

4.3 Operating Range

All voltages are absolute voltages referenced to $V_{\rm SS}$ -potential unless otherwise specified. ($T_{\rm a}$ = 25°C)

Table 5Operating range

Parameter	Symbol	Min.	Max.	Unit
High side floating supply offset voltage	Vs	$V_{\rm CC}$ -		V
		$V_{\rm BS}$ -1	500	
High side floating supply offset voltage ($V_{\rm B}$ vs. $V_{\rm CC}$, statically)	$V_{\rm BCC}$	-1.0	500	
High side floating supply voltage ($V_{\rm B}$ vs. $V_{\rm S}$, Note 1)	$V_{\rm BS}$	13	17.5	
High side output voltage ($V_{\rm HO}$ vs. $V_{\rm S}$)	$V_{ m HO}$	10	$V_{\rm BS}$	
Low side output voltage (V_{LO} vs. V_{COM})	$V_{\rm LO}$	0	V _{CC}	
Low side supply voltage	V _{CC}	13	17.5	
Low side ground voltage	V _{COM}	-2.5	2.5	
Logic input voltages /LIN, /HIN, EN, ITRIP (Note 2)	$V_{\rm IN}$	0	5	
FAULT output voltage	$V_{ m FLT}$	0	V _{CC}	
RCIN input voltage	V _{RCIN}	0	V _{CC}	
Pulse width for ON or OFF (Note 3)	t _{IN}	1	-	μs
Ambient temperature	T _a	-40	95	°C

Note 1 : Logic operational for $V_{\rm B}$ ($V_{\rm B}$ vs. $V_{\rm SS}$) > 7,0V

Note 2 : All input pins (/HINx, /LINx) and EN, ITRIP pin are internally clamped (see abs. maximum ratings)

Note 3 : In case of input pulse width at /LINx and /HINx below 1µs the input pulse may not be transmitted properly

VCC	VBS	RCIN	ITRIP	ENABLE	FAULT	LO1,2,3	HO1,2,3
< <i>V</i> _{CCUV-}	Х	Х	Х	Х	0	0	0
15V	$< V_{\rm BSUV-}$	Х	0	3.3 V	High imp	/LIN1,2,3	0
15V	15V	<3.2 V ↓	0	3.3 V	0	0	0
15V	15V	Х	$> V_{\rm IT,TH^+}$	3.3 V	0	0	0
15V	15V	> $V_{\rm RCIN,TH}$	0	3.3 V	High imp	/LIN1,2,3	/HIN1,2,3
15V	15V	$> V_{\text{RCIN,TH}}$	0	0	High imp	0	0

4.4 Static logic function table

4.5 Static parameters

 $V_{\rm CC}$ = $V_{\rm BS}$ = 15V unless otherwise specified. ($T_{\rm a}$ =25°C)

Table 6Static parameters

Parameter		Symbol	Values			Unit	Test condition
			Min.	Тур.	Max.		
High level input voltage		V _{IH}	1.7	2.1	2.4	V	
Low level input voltage		V _{IL}	0.7	0.9	1.1		
EN positive going threshold		$V_{\rm EN,TH^+}$	1.9	2.1	2.3		
EN negative going threshold		$V_{\rm EN,TH-}$	1.1	1.3	1.5		
ITRIP positive going threshol	d	$V_{\rm IT,TH^+}$	380	445	510	mV	
ITRIP input hysteresis		V _{IT,HYS}	45	70			
RCIN positive going threshole	d	$V_{\rm RCIN,TH}$	-	5.2	6.4	V	
RCIN input hysteresis		V _{RCIN,HYS}	-	2.0	-		
Input clamp voltage (/HIN, /LIN, EN, ITRIP)		V _{IN,CLMAP}	9	10.3	12		$I_{\rm IN}$ = 4mA
Input clamp voltage at high ir (/HIN, /LIN)	npedance	V _{IN,FLOAT}	-	5.3	5.8		controller output pin floating
High level output voltage	LO1,2,3	V _{OH}	-	V _{CC} -0.7	<i>V</i> _{CC} -1.4		<i>I</i> ₀ = 20mA
	HO1,2,3		-	<i>V</i> _B -0.7	<i>V</i> _B -1.4		
Low level output voltage	LO1,2,3	V _{OL}	-	V _{сом} + 0.2	<i>V</i> _{СОМ} + 0.6		<i>I</i> ₀ = -20mA
	HO1,2,3		-	V _s + 0.2	<i>V</i> _S + 0.6		
$V_{\rm CC}$ and $V_{\rm BS}$ supply undervoltage positive going threshold		$V_{\rm CCUV^+}$ $V_{\rm BSUV^+}$	11	11.7	12.5		
$V_{\rm CC}$ and $V_{\rm BS}$ supply undervoltage negative going threshold		V _{CCUV-} V _{BSUV-}	9.5	9.8	10.8	V	
$V_{\rm CC}$ and $V_{\rm BS}$ supply undervolt hysteresis	age lockout	$V_{ m CCUVH}$ $V_{ m BSUVH}$	1.2	1.9	-		

Table 6Static parameters

Parameter	Symbol	ymbol Values			Unit	Test condition	
		Min.	Тур.	Max.			
High side leakage current betw. VS and VSS	$I_{\rm LVS^+}$	-	1	12.5	μA	<i>V</i> _s = 600V	
High side leakage current betw. VS and VSS	$I_{\rm LVS^+}^{1}$	-	10	-		$T_{\rm J}$ = 125°C, $V_{\rm S}$ = 600V	
High side leakage current between VSx and VSy (x=1,2,3 and y=1,2,3)	I _{LVS-} 1	-	10	-		$T_{\rm J}$ = 125°C $V_{\rm Sx}$ - $V_{\rm Sy}$ = 600V	
Quiescent current $V_{\rm BS}$ supply (VB only)	I _{QBS1}	-	210	400	μA	HO=low	
Quiescent current $V_{\rm BS}$ supply (VB only)	I _{QBS2}	-	210	400		HO=high	
Quiescent current $V_{\rm CC}$ supply (VCC only)	I _{QCC1}	-	1.1	1.8	mA	V _{LIN} =float.	
Quiescent current V _{CC} supply (VCC only)	I _{QCC2}	-	1.3	2		$V_{\rm LIN}$ =0, $V_{\rm HIN}$ =3.3 V	
Input bias current	$I_{\rm LIN^+}$	-	70	100	μA	V _{LIN} =3.3 V	
Input bias current	I _{LIN-}	-	110	200	μA	V _{LIN} =0	
Input bias current	$I_{\rm HIN^+}$	-	70	100		V _{HIN} =3.3 V	
Input bias current	I _{HIN-}	-	110	200		V _{HIN} =0	
Input bias current (ITRIP=high)	I _{ITRIP+}		45	120		<i>V</i> _{ITRIP} =3.3 V	
Input bias current (EN=high)	$I_{\rm EN^+}$	-	45	120		$V_{\rm ENABLE}$ =3.3 V	
Input bias current RCIN (internal current source)	I _{RCIN}		2.8			$V_{\rm RCIN}$ = 2 V	
Mean output current for load capacity charging in range from 3 V (20%) to 6 V (40%)	<i>I</i> _{O+}	120	165	-	mA	C _L =10 nF	
Peak output current turn on (single pulse)	$I_{\text{Opk}^+}^{1}$		240			R_L = 0 Ω, t_p <10 µs	
Mean output current for load capacity discharging in range from 12 V (80%) to 9 V (60%)	I ₀₋	250	375	-		C _L =10 nF	
Peak output current turn off (single pulse)	I _{Opk-} 1		420			$R_{\rm L}$ = 0 Ω, $t_{\rm p}$ <10 µs	
RCIN low on resistance of the pull down transistor	R _{on,RCIN}	-	40	100		V _{RCIN} =0.5 V	
FAULT low on resistance of the pull down transistor	R _{on,FLT}	-	45	100		V _{FAULT} =0.5 V	

¹ Not subject of production test, verified by characterisation

4.6 Dynamic parameters

 $V_{\rm CC}$ = $V_{\rm BS}$ = 15 V, $V_{\rm S}$ = $V_{\rm SS}$ = $V_{\rm COM}$ unless otherwise specified. ($T_{\rm A}$ =25°C)

Table 7Dynamic parameters

Parameter	Symbol	Values			Unit	Test condition
		Min.	Тур.	Max.		
Turn-on propagation delay	t _{on}	400	530	800	ns	$V_{\rm LIN/HIN}$ = 0 or 3.3 V
Turn-off propagation delay	t _{off}	360	490	760		
Turn-on rise time	t _r	-	60	100		$V_{\text{LIN/HIN}}$ = 0 or 3.3 V
Turn-off fall time	t _f	-	26	45		C _L = 1 nF
Shutdown propagation delay ENABLE	t _{EN}	-	780	1100		V _{EN} =0
Shutdown propagation delay ITRIP	<i>t</i> _{ITRIP}	400	670	1000		V _{ITRIP} =1 V
Input filter time ITRIP	<i>t</i> _{ITRIPMIN}	155	230	380		
Propagation delay ITRIP to FAULT	<i>t</i> _{FLT}	-	420	700	1	
Input filter time at LIN/HIN for turn on and off	<i>t</i> _{FILIN}	120	300	-		$V_{\rm LIN/HIN}$ = 0 & 3.3 V
Input filter time EN	<i>t</i> _{FILEN}	300	600	-		
Fault clear time at RCIN after ITRIP-fault, $(C_{RCin}=1nF)$	<i>t</i> _{FLTCLR}	1.0	1.9	3.0	ms	$V_{\text{LIN/HIN}} = 0 \& 3.3 V$ $V_{\text{ITRIP}} = 0$
Dead time	DT	150	310	-	ns	$V_{\rm LIN/HIN}$ = 0 & 3.3 V
Matching delay ON, max(ton)-min(ton), ton are applicable to all 6 driver outputs	MT _{ON}	-	20	100		external dead time > 500 ns
Matching delay OFF, max(toff)-min(toff), toff are applicable to all 6 driver outputs	MT _{OFF}	-	40	100		external dead time >500 ns
Output pulse width matching. Pw_{in} -PW _{out}	PM		40	100		PW _{in} > 1 µs

5 Timing diagrams

Figure 8 Timing of short pulse suppression

Figure 9 Timing of internal deadtime

Figure 10 Enable delay time definition

Figure 11 Input to output propagation delay times and switching times definition

Figure 12 Operating areas

6 Package

6.1 PG-DSO-28

Figure 14 Package drawing

Dimensions	$80.0\times80.0\times1.5~mm^{\rm s}$	λ _{therm} [W/m·K]
Material	FR4	0.3
Metal (Copper)	70µm	388

Figure 15 PCB reference layout

6.2 PG-TSSOP-28

Table 8Data of reference layout

Dimensions	Material	Metal (Copper)
$76.2\times114.3\times1.5\ mm^{s}$	FR4 (λ_{therm} = 0.3 W/mK)	70μm (λ _{therm} = 388 W/mK)

www.infineon.com

Published by Infineon Technologies AG