全部產(chǎn)品
當(dāng)前位置:首頁 > 產(chǎn)品中心 > 全部產(chǎn)品
- IRKT142/08
- 電子從半導(dǎo)體向金屬擴(kuò)散運(yùn)動的結(jié)果,形成空間電荷區(qū)、自建電場和勢壘,并且耗盡層只在N型半導(dǎo)體一邊(勢壘區(qū)全部落在半導(dǎo)體一側(cè))。勢壘區(qū)中自建電場方向由N型區(qū)指向金屬,隨熱電子發(fā)射自建場增加,與擴(kuò)散電流方向相反的漂移電流增大,最終達(dá)到動態(tài)平衡,在金屬與半導(dǎo)體之間形成一個接觸勢壘,這就是肖特基勢壘。在外加電壓為零時,電子的擴(kuò)散電流與反向的漂移電流相等,達(dá)到動態(tài)平衡。在加正向偏壓(即金屬加正電壓,半導(dǎo)體加負(fù)電壓)時,自建場削弱,半導(dǎo)體一側(cè)勢壘降低,于是形成從金屬到半導(dǎo)體的正向電流。當(dāng)加反向偏壓時,自建場增強(qiáng),勢壘高度增加,形成由半導(dǎo)體到金屬的較小反向電流。因此,SBD與PN結(jié)二極管一樣,是一種具有單向?qū)щ娦缘姆蔷€性器件。
- 由于Si和GaAs的勢壘高度和臨界電場比寬帶半導(dǎo)體材料低,用其制作的SBD擊穿電壓較低,反向漏電流較大。碳化硅(SiC)材料的禁帶寬度大(2.2eV~3.2eV),臨界擊穿電場高(2V/cm~4×106V/cm),飽合速度快(2×107cm/s),熱導(dǎo)率高為4.9W/(cm·K),抗化學(xué)腐蝕性強(qiáng),硬度大,材料制備和制作工藝也比較成熟,是制作高耐壓、低正向壓降和高開關(guān)速度SBD的比較理想的新型材料。1999年,美國Purdue大學(xué)在美國海軍資助的MURI項(xiàng)目中,研制成功4.9kV的SiC功率SBD,使SBD在耐壓方面取得了根本性的突破。 SBD的正向壓降和反向漏電流直接影響SBD整流器的功率損耗,關(guān)系到系統(tǒng)效率。低正向壓降要求有低的肖特基勢壘高度,而較高的反向擊穿電壓要求有盡可能高的勢壘高度,這是相矛盾的。
- 對勢壘金屬必須折衷考慮,故對其選擇顯得十分重要。對N型SiC來說,Ni和Ti是比較理想的肖特基勢壘金屬。由于Ni/SiC的勢壘高度高于Ti/SiC,故前者有更低的反向漏電流,而后者的正向壓降較小。為了獲得正向壓降低和反向漏電流小的SiCSBD,采用Ni接觸與Ti接觸相結(jié)合、高/低勢 壘雙金屬溝槽(DMT)結(jié)構(gòu)的SiCSBD設(shè)計(jì)方案是可行的。采用這種結(jié)構(gòu)的SiCSBD,反向特性與Ni肖特基整流器相當(dāng),在300V的反向偏壓下的反向漏電流比平面型Ti肖特基整流器小75倍,而正向特性類似于NiSBD。采用帶保護(hù)環(huán)的6H-SiCSBD,擊穿電壓達(dá)550V。
- SiC是制作功率半導(dǎo)體器件比較理想的材料,2000年5月4日,美國CREE公司和日本關(guān)西電力公司聯(lián)合宣布研制成功12.3kV的SiC功率二極管,其正向壓降VF在100A/cm2電流密度下為4.9V。這充分顯示了SiC材料制作功率二極管的巨大威力。在SBD方面,采用SiC材料和JBS結(jié)構(gòu)的器件具有較大的發(fā)展?jié)摿ΑT诟邏汗β识O管領(lǐng)域,SBD肯定會占有一席之地。肖特基(Schottky)二極管的最大特點(diǎn)是正向壓降 VF 比較小。在同樣電流的情況下,它的正向壓降要小許多。另外它的恢復(fù)時間短。它也有一些缺點(diǎn):耐壓比較低,漏電流稍大些。選用時要全面考慮。