IGBT模塊
- 寬帶隙半導(dǎo)體材料主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車(chē)、航空、航天、石油開(kāi)采以及國(guó)防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測(cè)器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67 GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問(wèn)世,發(fā)展很快。
- 此外,256×256 GaN基紫外光電焦平面陣列探測(cè)器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱(chēng),他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動(dòng)藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來(lái)具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因?yàn)樗鼈冊(cè)陂L(zhǎng)波長(zhǎng)光通信用高T0光源和太陽(yáng)能電池等方面顯示了重要應(yīng)用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6H SiC單晶與外延片,以及3英寸的4H SiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)?。其他SiC相關(guān)高溫器件的研制也取得了長(zhǎng)足的進(jìn)步。目前存在的主要問(wèn)題是材料中的缺陷密度高,且價(jià)格昂貴。
- II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國(guó)3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開(kāi)始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的高潮。經(jīng)過(guò)多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過(guò)1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問(wèn)題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問(wèn)題。
- 寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對(duì)稱(chēng)性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問(wèn)題。這個(gè)問(wèn)題的解泱,必將大大地拓寬材料的可選擇余地,開(kāi)辟新的應(yīng)用領(lǐng)域。
目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類(lèi)材料發(fā)展的關(guān)鍵問(wèn)題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長(zhǎng)與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問(wèn)題,國(guó)內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。
- 實(shí)際上這里說(shuō)的低維半導(dǎo)體材料就是納米材料 ,之所以不愿意使用,主要是不想與現(xiàn)在熱炒的所謂的納米襯衣、納米啤酒 瓶、納米洗衣機(jī)等混為一談、從本質(zhì)上看,發(fā)展納米科學(xué)技術(shù)的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來(lái)控制和制造功能強(qiáng)大、性能優(yōu)越的納米電子、光電子器件和電路,納米生物傳感器件等,以造福人類(lèi)??梢灶A(yù)料,納米科學(xué)技術(shù)的發(fā)展和應(yīng)用不僅將徹底改變?nèi)藗兊纳a(chǎn)和生活方式,也必將改變社會(huì)政治格局和戰(zhàn)爭(zhēng)的對(duì)抗形式。這也是為什么人們對(duì)發(fā)展納米半導(dǎo)體技術(shù)非常重視的原因。
電子在塊體材料里,在三個(gè)維度的方向上都可以自由運(yùn)動(dòng)。但當(dāng)材料的特征尺寸在一個(gè)維度上比電子的平均自由程相比更小的時(shí)候,電子在這個(gè)方向上的運(yùn)動(dòng)會(huì)受到限制,電子的能量不再是連續(xù)的,而是量子化的,我們稱(chēng)這種材料為超晶格 、量子阱材料。